6 Mayıs 2009 Çarşamba

FraktaL ResimLer

Fraktallar, matematiksel denklemlerin sonucunda bilgisayar tarafından çizilen muhteşem görüntülerdir.Bu şekillerin en önemli özelliği, ne kadar büyütürseniz büyütün, görüntünün her küçük ayrıntısının, bütün ile tıpatıp aynı karakteristikleri taşımaları...İşte fraktal örnekleri...












FraktaL geometRi

Her şey, Benoit Mandelbrot’un kafasında oluşan ve basit gibi görünen bir soru ile başlar:
İngiltere’nin kıyı uzunluğu ne kadardır?
Yanıtı bulmak için yapılabilecek ilk şey, ölçeği belli bir harita bulduktan sonra, buradan kıyı şeridinin uzunluğunu, sözgelimi bir iple ölçmek ve sonucu haritanın ölçeğiyle çarparak, kıyı uzunluğunu hesaplamak olabilir.
Peki, kıyı şeridinin uzunluğu ‘gerçekte’ ne kadardır? Kıyı şeridinin uçaktan çekilmiş bir dizi fotoğrafı ile daha doğru bir ölçüm yapabilirsiniz; şüphesiz bu değer, harita üzerinde hesaplanandan biraz daha büyük çıkacaktır. Biraz daha ileri gidip, tüm kıyıyı adım adım ölçtüğünüzü düşünelim; bu durumda ne kadarlık bir uzunluk hesaplayabilirsiniz? Peki ya tüm uzunluğu milimetrik bir cetvelle ölçebildiğinizi düşünün; hatta moleküler boyulara kadar uzanan hassas bir uzunluk ölçümü yapabildiğinizi... Sonuçta, ölçümlerinizi hassaslaştırdıkça, kıyı uzunluğunun sonsuza gittiğini farkedeceksiniz. Sonlu bir kara parçasının sınırları, aslında sonsuz uzunluktadır!

Bu basit ve çarpıcı sonuç, Benoit Mandelbrot gibi bir matematikçinin elinde, ‘fraktal geometri’ dediğimiz yeni bir matematik dalının temellerinin atılmasını sağladı. Mandelbrot, tabiattaki biçimlerin matematiğini keşfeden ve buna latince ‘kırıklı’ anlamına gelen ‘fractus’ sözünden türettiği ‘fractal’ adını veren kişidir. Kendisinin tanımladığı ünlü ‘Mandelbrot Kümesi’, belki de dünyanın en meşhur geometrik şekillerinden birisidir.
Fraktal geometri, bildiğimiz Euklid (Öklid) geometrisinden oldukça farklıdır. Euklid geometrisi, okullarda okuduğumuz, üniversite sınavlarında karşımıza çıkan sıfır, bir iki ve üç boyutlu geometrik şekillerle ilgilenir. Mandelbrot’un fraktalleri ise, kesirli boyutlara sahip olmaları açısından, geleneksel geometriden kökten farklı bir yapı sergiler. Matematiğe çok girmeden bunu şöyle örneklendirebiliriz: Elinizde bir sayfa kağıt olduğunu ve bunun iki boyutlu olduğunu düşünün (aslında kağıt, kalınlığı da olan üç boyultu bir nesnedir ama, şimdilik kalınlıksız iki boyutlu bir yüzey düşünüyoruz). Kağıdı elinizde o kadar çok buruşturup sıkıştırıyorsunuz ki, artık son derece karmaşık hale gelmiş bu iki boyutlu yüzeyi ‘iki boyutlu’ olarak nitelemek gittikçe imkansızlaşıyor. Üç boyutlu olduğunu da iddia edemiyorsunuz, zira elinizdeki ne kadar buruşmuş olursa olsun, iki boyutlu bir yüzeydir aslında. Dolayısıyla, buruşma miktarı arttıkça, 2.05, 2.28, 2.4 gibi kesirli boyutlara sahip bir yüzey şekli elde etmeye başlarsınız. İşte fraktallerdeki kesirli boyut kavramı da buna benzer bir karmaşıklığın neticesinde ortaya çıkar. Aslında doğada hakim olan geometri de işte bu ‘fraktal geometri’dir...

Doğadaki biçimler gerçekten de geleneksel geometrinin bize öğrettiğinden çok farklıdır. Geleneksel (Euklid’çi) geometri daha ziyade idealize edilmiş soyutlamalardan oluşuruken, tabiattaki biçimler çok daha karmaşıktırlar. Yerküreyi 6-7 kez dolaşabilecek kan damarlarını ve bir kaç tenis kortu kadar alan kaplayan akciğer hava keseciklerini bu küçücük vücudumuza; açıldığında 2 metreyi aşkın bir uzunluğa erişen DNA molekülümüzü 100 trilyon hücremizin her birindeki bir kaç mikrometrelik (milimetrenin binde biri) çekirdeğin içine paketlenmesinin ardında, işte bu ‘fraktal’ kurallar yatmaktadır. Fraktal özelliklere sahip bir geometrik şekli evinizde kendi başınıza elde etmenin bu gün için en kolay yolu, internette rahatlıkla bulunabilen hazır bilgisayar programlarından birisini kullanmaktır (fractal explorer). Zira her ne kadar basit olursa olsun, bir ‘fraktal’ ortaya çıkarmak, matematiksel bir dizi işlem serisi (iterasyonlar) gerektirir ki, bu tekrarlayan işlem serileri, tam da bilgisayarlara göre bir iştir. Örneğin Mandelbrot Kümesi aslında, ‘karmaşık sayılar’ı da içeren ve kendi sonucunu her tekrarda ‘giriş verisi’ olarak kullanan bir iterasyon, yani tekrar tekrar hesaplama işlemidir. Bu hesaplama sonucu elde edilen kapalı noktalar kümesi, alanı sonlu, fakat kenar uzunluğu sonsuz bir küme olarak tüm fraktallerin –tabir yerindeyse- atasıdır.
Fraktalların bir başka çarpıcı özelliği, doğada çokça rastladığımız ‘kendine benzeme’ (self similarity) özelliğidir. Herhangi bir iterasyon dizgesi ile oluşturulan bir fraktal biçim, aynı matematiksel formül çekirdeğinin defalarca üst üste tekrarlanması ile ortaya çıktığından, ana kümenin şekli, küme kenarlarının mikroskobik detaylarında dahi benzer görünüm ve biçimlerde tekrarlanır.Tabiatta da bu durumla sık sık karşılaşırız:Örneğin ağaçların bir çok tipinde, dal ve köklerdeki saçaklanma biçimleriyle; dalların yan dallara ayrılma biçimlerinin, yaprakların çıkış noktalarının ve yapraklar üzerindeki damarların dallanış biçimlerinin hep birbirine benzer bir kalıp izlediğine belki de daha önce dikkat etmişsinizdir. Daha çarpıcı bir örnek olarak, atom-altı düzeyi de düşünebiliriz. Bu düzeyde ulaştığımız mikro-alem, aynen uzay boşluğu gibi karanlık, nisbi olarak korkunç mesafelerle birbirlerinden ayrılmış bileşenlerden (elektronlar - protonlar vb.) oluşan bir boşluktur ve atomun ardında, yeni bir ‘uzay boşluğu’, farklı ölçeklerle de olsa bizi bekler gibidir! İşte bu özellikler, fraktal geometrinin sadece ağlenceli bir oyun olmaktan ziyade, hayatın kendisini daha iyi anlamamızda yardımcı bir araç olarak kullanılması konusunda bizi defaatle ikaz ediyor.Yapısındaki bıktırıcı ve binlerce tekrara dayalı matematiksel altyapıya rağmen fraktal geometri, özellikle günümüz yazılım teknolojisinin nimetleriyle de birleşince artık oldukça yaygınlaşmış durumda. Günümüzde fraktalleri oluşturmak için uzmanlığa gerek olmadığı gibi, güzelliklerini ve bize anlattıklarını anlayabilmek/takdir edebilmek için matematik dehası olmak gerekmiyor. Tek şart, insanî bir merak ve iştiyak sahibi olmak; hepsi o kadar.

Matematik fıkraLarı...

Matematikçi
Balonla seyehat etmekte olan bir grup yolunu kaybeder ve biraz alçalarak aşağıdaki kişiye yaklaşırlar.
İçlerinden biri aşağıya bağırır:
-Heyyy! Şu anda nerdeyiz?
Aşağıdaki şahıs onlara şöyle bir bakar ve biraz düşünüp dalgın dalgın cevap verir:
-Bir balonun içinde ve oldukça alçaktasınız.
Balondaki adam doğrulur ve arkadaşlarına:
-Biliyor musunuz bu adam matematikçi der.
Bunun üzerine balondaki diğer şahıslar bunu nerden anladığını sorduklarında şöyle yanıtlar:
-Birincisi, çok düşündü,ikincisi söylediği şey kesin olarak doğru,üçüncüsü,bir işe yaramıyor.

Deney
Bir matematikçi,bir fizikçi ve bir kimyacıyı bir ay süreliğine ayrı ayrı odalara kapatmışlar.
Odalarda kilitli bir buzdolabı ve çeşitli araç gereç varmış.
Bir ay sonunda odaların kapılarını açıp bakmışlar.
Fizikçi mekanik bir makine yaparak buzdolabının kapısını kırmış ve karnını doyurmuş.
Kimyacı çeşitli elementleri karıştırarak bir sıvı yapıp buzdolabının kapısını eritmiş.
Son olarak matematikçinin odasına girmişler.
Matematikçinin kurumuş cesedi duvara dayanmış bir halde yerde kanla şunlar yazılıymış:
Teorem: Buzdolabını açamazsam ölürüm.
İspat: Buzdolabını açtığımı varsayalım...

İndirgeme
Bir matematikçi ve fizikçi fakültenin dinlenme salonun da oturup kahvelerini yudumlarken bakarlarki kahve makinası tutuşmuş.Fizikçi hemen koşarak eline aldığı kovayı doldurarak ateşi söndürür.
İkinci gün olacak ya aynı olay tekrar vuku bulur.
Bunun üzerine matematikçi koşar kovayı alır getirir ve fizikçinin eline tutuşturarak problemi daha önce çözümlenmiş olanına indirger.

Yangın
Bir mühendis,bir fizikçi ve bir matematikçi bir hoteldedir.
Derken mühendis burnuna gelen duman kokusuyla uyanır,hole çıkar,bir de bakar ki bi yangın var.
Eline geçirdiği bir kovaya su doldurarak yangını söndürmeye çalışır.
Daha sonra fizikçi uyanır,aynı yangını görür ve yangın hortumunu bulur ve başlar hesap yapmaya;
Su basıncı,alevin şiddeti,aradaki mesafe falan derken yaptığı hesaplara göre yangının sönmeyeceği ortaya çıkar ve yatağına geri döner.Daha sonra matematikçi kalkar kokunun etkisiyle ve hole koşar,bir de bakar yangın var.
Çözüm aramaya koyulur.
Derken yangın hortumunu bulur ve ”çözümü buldum” diye bağırarak yatağına geri döner.

5 Mayıs 2009 Salı

FinaL fantaSy VerSus XIII

1987 yılında başarısız ve ufak bir şirket olan square şirketi son oyunlarını yapmaya karar verir.Bu oyun son olduğundan isminide finaL fantasy koyarlar.Ama bu oyun aslında yepyeni bir başlangıçtır...Bu oyun büyük bir başarı yakalar ve artık square enix adını alan şirket devam kararı alır.Final fantasy nin başarısının ardından final fantasy 2 piyasaya sürülür ve Japonya'da 1.5 milyon satar.Artık finaL fantasy bir efsane olmaya başlamıştır.Oyunun başarısı ilerleyen yıllarda biraz düşsede finaL fantasy 7 ile tekrar müthiş bir çıkış yakalar..."SephiRoth" ve "cLouD" karakterleri en sevilen final fantasy karakterleri olur.8,9,10,11,12 derken şimdide finaL fantasy XIII karşımızda...Ama bu oyun tek bir oyun değiL.

6 tane FF13 çıkarılacak, altısı da birbirinden farklı olacak; farklı karakterlere, hikayeye ve farklı dünyalara sahip olacak. Square Enix, FF13 serisini genel bir isimle, "FABULA NOVA CRYSTALLIS" olarak adlandırıyor. Şu an altı seriden sadece üçü duyuruldu ve ilk üçü Playstation 3 ve PSP için çıkarılacak. Diğer üçünün hangi platformlara çıkacağı, oyun mu, yoksa animasyon filmi mi olacağı şu an belli değil.

İşte bunlardan biri olan FinaL fantaSy Versus XIII tanıtım vidyosu.Ps3 ün eşsiz görseLLiği ile...

4 Mayıs 2009 Pazartesi

Geometri tarihi geLişimi...

Uzayın ve uzayda tasarlanabilen biçimlerin, kurallara uyularak incelenmesini konu alan matematik dalı. Yunanca «geo», yer ve «metron», ölçüden.

Geometri Nil kıyılarında doğdu. Bu ırmağın düzenli aralıklarla taşması, tarlaların sınırlarını siliyor, Mısırlıları güç sorunlarla karşı karşıya bırakıyordu: çünkü tarlaların sınırlarını yeniden çizmek, herkese kendi yerini vermek, bunun için de tarlaların yüzölçümünü hesaplamak, nirengiler dikmek, kısacası, geometri yapmak gerekiyordu.

Doğru Kavramının Anlaşılması İçin

insanlara, yer ölçümüne ilişkin somut sorunları çözümleme olanağını veren geometriden, giderek soyut bir geometri doğdu. Böylece aynı kavramın değişik durumlara uygulanabileceği anlaşıldı. Sözgelimi, deniz üzerindeki ufuk çizgisiyle çekülün gergin ipi arasında hiç bir maddi ortaklık yoktur; ama ikisi de geometride doğru adı verilen kavramı belirtir; doğru kavramı, ancak bunun gibi somut örneklere bakılarak anlaşılabilecek bir kavramdır.

Bir kâğıdın üstüne çizilen düz bir çizgi, doğru hakkında yaklaşık bir fikir verir. Oysa doğru, sınırlı değildir (çizgi ise yaprağın kenarında biter) ve doğrunun kalınlığı yoktur (çizginin ise ne kadar ince çizilmiş olursa olsun, bir kalınlığı vardır). Bunun gibi, bir topa, bir küreye bakılarak küre kavramı hakkında bir fikir sahibi olunabilir.

Eukleides'in Aksiyomları ve Teoremleri

İskenderiyeli bir Yunan bilgini olan Eukleides, M.Ö. III. yy .da geometri hakkında ilk mükemmel kitabı yazdı. Eukleides o zamanki kitaplarında (bunlar somut sorunların çözümünü gösteren basit «reçete» derlemeleriydi) farklı bir açıdan bakarak, öne sürdüğü sonuçları, kesin kanıtlara başvurma yoluyla kanıtlamak istiyordu.

Bunun için önce, sezgiye dayanan birtakım kavramlar (nokta, doğru, düzlem) kabul etti (aksiyom), sonra doğru sandığı, ama doğruluğunu kanıtlayamadığı birtakım gerçekleri belirledi (bütün, parçadan daha büyüktür; üçüncü bir niceliğe eşit olan iki nicelik birbirine de eşittir) [postulat]. Bu aksiyom'larla postülat'lara dayanılarak geometri teorem'leri kurulur.

Kuşkusuz Eukleides, aksiyomlarının doğruluğunu kanıtlayamazdı, ama ona ve çağdaşlarına göre bunlar, tartışma götürmez gerçeklerdi. Sözgelimi, dik açı konusunda kesin bir yargıya varabiliyordu, çünkü gerçek hayatta, deniz üzerindeki ufuk çizgisiyle, elindeki bir çekülün yaptığı dik açıyı gözleriyle görebiliyordu.

Eukleides geometrisi, üstünde yaşadığımız dünyayı anlamak için mükemmel bir araçtır; bu geometri, bilim ve tekniğin ilerlemesinde önemli bir etken olmuştur.

Eukleides Dışı Geometriler

Eukleides aksiyomlarının kesinliği, XIX. yy .dan itibaren tartışılmağa başladı. Alman matematikçisi Riemann ve Rus matematikçisi Lobaçevski, Eukleides aksiyomlarının tam karşıtı olan aksiyomlardan işe başladılar. Böylece ilk bakışta hiç bir pratik yararı yokmuş gibi görünen değişik geometriler (Eukleides dışı geometriler) doğdu. Ve bu yeni geometriler o zamandan beri birçok alanda (nükleer fizik, astronotik v.b.) işe yaradı (Einstein bunlar sayesinde bağıllık kuramını kurabildi).

Cebir tekniklerinin geometriye uygulanması, noktaları sayılara veya koordinatlara bağlayarak bütün eğrileri hesaplamak ve saptamak olanağı sağlayan analitik geometri'yi doğurdu (Descartes).

Rönesans Ressamları ve Tasarı Geometri

Tasarı geometri'de, uzay geometrinin şekilleri veya öğeleri, tam ve aslına uygun biçimde bir düzleme (üzerine şekil çizilen kâğıt) aktarılır. Rönesans'ın büyük ressam ve mimarları tasarı geometriden yararlanmışlarsa da, onu gerçek bir matematik sistemi haline getiren (temel geometri, kaba perspektif), matematikçi Monge olmuştur.

İzdüşüm geometrisi (bir şeklin herhangi bir noktasını esas alarak tümünü bir düzleme izdüşümle aktarmak), resim ve süsleme sanatı için de çok önemlidir. Ama asıl yeri, aksiyomları ve ilişkileri bakımından izdüşüm geometrisi, matematiğin bir dalıdır.

Saf (Katıksız) Geometri

Geometride, her yerde geçerli kesin belirlemeler giderek azalmakta, başlangıç aksiyomları artık sadece belirli bir geometri için doğru sayılmaktadır. Burada gerçek olan başka bir yerde yanlış olabilir. Her şeye rağmen, maddi gerçeklerin incelenmesinde uygulamalı geometrinin sağladığı olanaklar sonsuzdur.

Yüzölçümü hesaplanmak istenen bir tarlanın çizgisel taslağından tutun da gökcisimlerinin yörüngelerinin saptanmasına, haritalara, planlara, coğrafyada kullanılan ölçeklere, makine yapımına, mimarlığa varıncaya kadar, geometri bilgisinin mutlaka gerekli olduğu alan pek çok ve geniştir.

Bununla birlikte, matematik çalışmaları daha ileriyi, uzak geleceği de göz önünde tutar. Hemen yararlanma kaygısına kapılmadan yapılan matematik araştırmalar saymakla bitmez. Bu çalışmalar, doğruluğu mevcut koşullara bağlı olmayan kusursuz örnekler yaratma amacı güder. Saf geometrinin esası budur.

Thales

Ünlü bir bilgin ve filozof olan (Yunanistan'ın Yedi Bilge'sinden biridir) Miletoslu Thales (M.Ö. 640-562), düzlem geometrinin ilk teoremlerini hazırladı. Thales, bir yapının yüksekliğini, onun gölgesini ölçerek hesaplayabiliyordu.

Pithagoras

«Bir dik üçgende, hipotenüs (dik açının karşısındaki kenar) üzerine kurulan kare öteki iki kenar üzerine kurulan karelerin toplamına eşittir»: bu teoremi M.Ö. VI. yy.da yaşamış ünlü Yunan filozof ve matematikçisi Pithagoras bulmuştur. Çarpım tablosunu ve telli çalgılarda gamı icat eden de odur.

Monge

Tasarı geometrinin yaratıcısı ve analitik geometrinin büyük kuramcısı Gaspard Monge (1746-1818), bütün XIX. yy. matematikçilerinin eşsiz ustasıdır.

3 Mayıs 2009 Pazar

KesirLerin tarihi gelişimi...

RASYONEL SAYILAR(TARİHİ NOTLAR)
Mısırlılarda Kesirler:
· Mısırlılar kesirleri paydaları 1 olacak şekilde sınırlandırmışlardır.
· Herhangi bir pozitif rasyonel sayı; pozitif tam sayıların çarpmaya göre terslerinin toplamı şeklinde ifade edilebilir.

Yukarıdaki örnek gibi herhangi bir rasyonel sayının sınırsızca bir çok temsili vardır. Bu ifadeler Eski Mısırlılar tarafından kullanıldığı için, Mısır Kesirleri olarak adlandırılır.
Bu hiyeroglifler ağızdan çıkan bir harfe (R) çevrilmiş ve kullanılmıştır. Bu yüzden yukarıdaki kesir şeklinde R2R6R21 ifade edilmiştir.

Kesirler Ve Romalılar:
Romalılar subunitlerin yerine kesirleri kullanmaktan kaçınmışlardır.
Ayakları zerrelere (yani ayak hesabını, parmak hesabına ) Pound’ ları da Ounc’ lara bölmüşlerdir.
1 Pound = 454 gram, 1 Ounc= 28,3 gram
1 Pound = 16 Ounc
ve Romalıların 1 parçasının adı Uncia’dır. Bu da 340 gcrama tekabül eder.

Rasyonel Sayılar ve Yunanlılar:
Yunanlılar Rasyonel sayıları gerçekten çok seviyorlardı. Abartısız olarak Yunanlıların Rasyonel Sayılara taptığı söyleniyor. Pisagor tarafından bulunan klişe şu idi.
Dünya güzeldi çünkü onun yapısı ve işleyişi tam sayıların oranı olarak, matematiksel olarak ifade ediliyordu.
Geometrik ifadelerin her zaman rasyonel sayılar biçimde ifade edilmesi, Pisagor’un mantığının temel ilkelerinden biriydi. Kenar uzunluğu bir olan karenin köşegenin bir rasyonel sayı olmadığı anlaşıldıktan sonra bu klişenin güvenirliği azaldı.

Yunanlılar bu bilgiyi sır olarak saklamaya çalıştılar. Çünkü bu onları utandırıyordu. Bütün uzunluklar Rasyonel sayılarla ifade edilemiyordu. Rasyonel sayılar oranları ve paylaşımları ölçmede yeterli olmasına rağmen uzunlukları ifade de yetersizdi. Bu amaç için yeni bir sayı sistemi kurmak gerekliydi. İkinin karekökü bu sayı sistemine bir örnektir. İkinin karekökü Yunanlılar tarafından bulunan bir sayı değildi.

TARİHSEL NOTLAR
Kesir:
Arapçada kesir anlamına gelen “al-kasr” kelimesi Latince’ deki kırmak anlamına gelen “fractus” kelimesinden türetilmiştir.
İngilizce’ deki kesir kelimesi 1321 yılında ilk kez Chavcer tarafından kullanılmıştır.
“ Kesir çizgisi payın üste, paydanın alta yazıldığı ufak bir çizgidir.” der.
Bölme Sembolü ( ¸)
Bölme sembolü; John Wallis (1616-1703) yılında adapte edilmiş , İngiltere’ de ve Amerika’ da kullanılmıştır. (fakat Avrupa’ da (:) iki nokta üst üste kullanılıyordu.)
1923 yılında, Matematik Komitesi açıkladı ki: ne : ne de ¸ işaretleri tam olarak kullanılıyor veya kullanılmıyor.
Bölüm (-) işaretinin iş hayatında çok önemli bir anlamı olmadığına göre bunu matematiğe (kesirli ifadelere ) adapte edelim ve noktaların arasında “/ ” ‘ u kullanalım. Bundan sonra ¸ işareti matematiksel bir ifade haline dönüştü.

RASYONEL SAYILAR
Tarihsel olarak, bölme işlemi için gerekli olan kapanma kümesi, çıkarma işlemi için de gerekli plan kapanma kümesi ihtiyacından önce gelmektedir. k için bir ayı bulamaya ihtiyacımız vardır.
Bu yüzden; 1¸ 2 = k
Mısırlılar kesirleri paydası 1 olacak şekilde sınırlandırmışlardır.
Romalılar subunitlerin yerine kesirleri kullanmaktan kaçınmışlardır.
Ayakları zerrelere (baş parmak) ve libreleri de ounclara bölmüşlerdir. (pound: 454 - ounc: 28,3) ve Romalıların biriminin 12. parçası uncle olarak adlandırılır.
Buna rağmen, insanlar hesaplamalarda daha pratik bir kesinlik sağlamaya ihtiyaç duymuşlar ve bölme işlemindeki teoriksel kapanma gereksinmiştir. Z kümesindeki tam sayılarda, bazı bölme işlemleri olanaklıdır.
Buna rağmen, bazıları değilidir.

Rasyonel sayılar:
Bir rasyonel sayı; iki tam sayının kendi aralarında oranı gibi ifade edilebilen gerçek bir sayıdır. Genellikle a / b şeklinde yazılır ve payda (b) sıfıra eşit değildir.
Rasyonel ayılar genellikle kesirler olarak adlandırılır. Kesirlerin ondalık basamağında olan 0-9 arasındaki genişlemeleri sınırlı ya da periyodiktir.
Bütün rasyonel sayılar kümesi Q ile gösterilir. Genellikle büyük ve kalın simgeyle gösterilir. Rasyonel olmayan gerçek sayılar irrasyonel olarak adlandırılır.

Rasyonel Sayıların İnşası:
Matematiksel olarak; tam sayı çiftlerinin düzenli olarak tanımlandığı sayılar sıfıra eşit değildir. Bu çiftleri toplama ve çıkarma altında takip eden şu kurallara göre tanımlayabiliriz.

1. (a,b) + (c,d) = (a x d + b x c , b x d )
(a,b) x (c,d) = (a x c, b x d)

Bizim beklentimize uygun 2/4 = 1/2 eşitliğini denklik ilişkisi olarak tanımlayabiliriz.
(a, b) ~ (c,d) Þ a x d = b x c
bu denklik ilişkisi toplama ve çarpma üzerinde uyumlu olarak tanımlanır. Q’ u bölüm kümesi olarak tanımlayabiliriz.

Denklik İlişkisi:
(a,b) ve (c,d) iki kesir olsun. Eğer ad = bc ise (c,d) kesrine denktir denir.
(a,b) ~ (c,d) biçiminde gösterilir.
(a,b) ~ (c,d) Û ad = bc
örnek (1,2) ve (3,6) elemanlarından her ikisi de kesirdir. 1.6 = 2.3 olduğundan (1,2) kesri (3,6) kesrine denktir.

Denklik Sınıfı:
(a.b) kesrinin elemanına denk olan elemanlarının kümesi yani (a,b)’ nin denklik sınıfı ( ) ile gösterilir.
Örnek: ( ) = {....., (-2,-4).(-1,-2),(1,2),(2,4).......}
= {(x,2x): x e Z ve x ¹ 0}’ dır.

Rasyonel Sayılar Ve Kesirler:
a , b e Z ve şeklinde (b ¹ 0) ifade edilen sayılar kesirler olarak adlandırılır. b burada bütünü temsil ediyor. a ise parçayı temsil ediyor.

Rasyonel Sayı:
a , b e Z ve şeklinde (b ¹ 0) ve a , b aralarında asal olmalıdır. Bu şekildeki sayılara rasyonel sayı
denir. Rasyonel sayılar denklik sınıflarından oluşmuştur. biçimdeki en sade şekli bu denklik bağıntısını temsil eder.
Mesela ; ( ) = {........., ,......... }
Denklik sınıfında bulunan bütün elemanlar kesirdir. temsili kesir ve bu denklik sınıfını temsil ettiği için rasyonel sayıdır. Rasyonel sayılar denklik sınıflarından oluşmuştur.
Önemli Notlar
¸ verilmiş ve c ¹ 0 ‘ dır. Görüyoruz ki biz b ¹ 0 ya da d ¹ 0 diye bir açıklama kullanmıyoruz. Çünkü kesirli olmanın şartı paydanın sıfıra eşit olmamasıdır.
Rasyonel sayılar genellikle kesirler olarak adlandırılır. kesirlerin ondalık basamağında bulunan sayıların genişlemeleri sınırlı ya da periyodiktir.
= 1,66666...., =0,142857142, = 0,5
Sonuç Olarak:
Rasyonel sayılar düzenli olarak yoğun bir kümedir. Herhangi iki rasyonel sayı arasında diğer bir rasyonel sayı vardır. Aslında sayılamaz çoklukta rasyonel sayı vardır.
Rasyonel sayılar bölgesel sıklığın olmadığı alanın bir örneğidir. Bu alan tamamen bağlantısızdır. Rasyonel sayılar tamamlanıyor ve Reel sayılar da rasyonel sayıların tamamlayıcısıdır. Rasyonel olmayan Reel sayılara İrrasyonel sayılar denir. Rasyonel sayılar Reel sayıların alt kümesidir.

2 Mayıs 2009 Cumartesi

KümeLerin tarihsel gelişimi...

Matematik dilinde birlik sağlama gereksinimi on dokuzuncu yüzyıl sonlarına doğ¬ru duyuldu. Bu işi İlk görenlerin başında Alman matematikçi Georg Cantor gelir. Bu birlik kümelerle sağlanır. Zaten sonlu ve sonsuz kümeleri oluşturmak amacında olan Cantor (1845 -1918) bu amaca ilk ulaşanlardan biriydi. Bernard Bolzano (1851) do¬ğal sayıların ötesinde sayılabilme problemini ortaya koyan sonsuz kümeler üzerine olan İlk çalışmasını yayınladı. 1878 yılında Georg Cantorun küme kavramım ortaya atan ilk çalışması yayınlandı. Frege 1893 yılında Aritmetiğin Temel Yasaları isimli ya¬pıtının İlk cildini yayınladı. Bu eserde Cantorunkine çok yakın bir şekilde küme kav¬ramını ortaya koydu. Sayıların kümeye dayalı tanımını verdi.

1903 yılında Russel paradoksu ilk kez ortaya atıldı. Bu paradoks. Fregenin ki¬tabının ikinci cildinde yer aldı. Çalışmanın konusu, matematiğin kümeler kavramı üze¬rine kurulmasını olanaksız kılıyordu. Kendisini öğe olarak kabul eden kümelerin kümesi anlamsızdır şeklinde olan bu paradoks her şeyin küme olarak alınamayacağım ortaya koydu. Ernest Zermelo, paradoksal kümelere olanak vermeyen ilk aksiyom sistemim önerdi. Russell ve Whitehead 1910 yılında dikkat çekici olan Matematiğin İlkeleri isim¬li eserlerini yayınladılar. Paradokslardan kaçınmak için tipler kuramı adı altında karma¬şık bir yazım önerdiler. Bu teknik bazı bilgisayar dilleri için temel oluşturdu.

Abraham Fraenkel, 1922 yılında Zermelonun aksiyom sistemini geliştirdi. Günümüzde Zermelo - Fraenkel İsmiyle anılan bu sistem yaygın bir kullanım alanı buldu. John Von Neumann 1924 yılında kümeler kuramım aksiyomatik hale getirmek için temel iki kavrama, yani paradoks olabilecek sınıflara ve kümelere dayanan bir çözüm önerdi. Kurt Gödel 1940 yılında sonlu ötesi sayıların tanımlanmasında zorunlu olan seçme aksiyomu ve bu sayılara tutarlı bir temel hazırlayan süreklilik varsayımının kuramın diğer aksiyomlarıyla çelişmediğini gösterdi. Paul Joseph Cohen 1963 yılında, bu iki önermenin olumsuzunun da kuramın diğer aksiyomlarıyla çelişmediğini gösterdi. Cohenİn süreklilik varsayımı hakkındaki bu sonucu rahatsız edicidir. Nasıl kurulduğu belirtilmeksizin bir doğrunun noktalarının kümesi ve doğal sayıların sayılabilirliği arasında sonsuz büyüklükte keyfi bir sayının sabitleştirilebileceğini işaret eder. Bu konu üzerindeki araştırmalar devam etmektedir.

Kümelerin bu biçimde kurulması sağlandıktan sonra kümelerin dili yazılmıştır. Bu dille kümeler üzerinde bileşim, kesişim, fark. simetrik fark ve tümleyen gibi tanımlar yapılmış ve bu tanımlarla kümelerin kullanılması sağlanmıştır. Kümeler üzerindeki bağıntılar bu dalın bilgisayarlara nasıl yüklenebileceğini göstermiştir. Bu konudaki İlk çalışmaları George Boole (1815 -1864) yapmıştır ikinci ilk adım da Georg Cantor (1845 -1918) tarafından atılmıştır.

Georg Cantor (1845 - 1918)
Cantor Almanyada Hallede yaşadı ve dersler verdi. Trigonometrik seriler üzerine olan çalışmaları onu sonlu ötesi adım verdiği sayılan bulma düşüncesine ulaştırdı. Bu sayının amacı doğal sayıların ötesinde işlem kapasitesini araştırmaktı. Bu noktadan hareketle kümelerin dilini oluşturma düşüncesine vardı. Çalışmaları bazı çağdaşlarınca İyi anlaşılamadı ve çok sert tartışmalara yol açtı. Ünlü matematikçi David Hilbertin (1862-1943) dediği gibi "Georg Cantorun bizim için kurduğu cennetten hiç kimse bizi kovamaz!" sözü bugün haklılığını kanıtlamıştır.

Kümelerin sıralanması, sıralama tipleri, kümelerin sayılabilmeleri, kardinal sayılar, sonlu ve sonsuz kümeler, kuvvet kümeleri. Cantor sürekliliği bu alanın başlıca konula¬rıdır. Bu konularla yeni yeni modeller oluşturulabilir. Hatta eski mantığın bugün yeni modellerle matematiksel formüle bağlandığı bir gerçektir.

Bu arada Cantor paradoksunu da yazalım. Buna daha çok yalancı paradoksu denir. Eskiçağdan beri bilinen bu paradoksun ilk ifadesi şu şekilde yapılmıştır; bütün Giritliler yalancıdır. Epimenides de Giritlidir. "Ben yalan söylüyorum” diyor. Daha kısa bir söyleyişle ben bir yalancıyım. Bu halde Epimenides doğruyu söylüyor mu? Hayır. Çünkü kendisi Giritlidir, o halde yalancıdır. Ama "yalan söylüyorum" derken yalan söy¬lüyorsa o zaman doğruyu söylüyor. Bu durumda çelişki kaçınılmazdır.

Alıntıdır:http://forum.kanka.net/showthread.php?t=308756

YeşiL eLbise...

Yolda karşılaştığımızda ezan okunuyordu.
-Gel seni camiye götüreyim,dedim.Bugün Cuma biliyorsun.
-Sen de benim camiye gitmediğimi biliyorsun,dedi
-Biliyorum ama,sebebini gerçekten merak ediyorum.
-Ne bileyim olmuyor işte,dedi.Hem pantolonumun ütüsü bozulup,dizleri çıkar diye endişe ediyorum.
Gayri ihtiyari gülmeye başladım.
-Herhalde şaka yapıyorsun,dedim.Bunun için cami terkedilir mi?
-Ciddi söylüyorum,dedi.Giyimime ve özellikle yeşile düşkün olduğumu bilirsin.
Gerçekten öyleydi.Giydiği birbirinden güzel elbiseleri mutlaka yeşilin bir başka tonundan seçer ve her zaman ütülü tutardı.
-Peki,dedim.Hayatında hiç camiye gitmedin mi?
-Çocukken dedemle birkaç kere gitmiştim,dedi.Hem o yaşlarda dizlerim aşınacak diye herhalde endişe etmiyordum.Fakat artık camiye gidebileceğimi zannetmiyorum.
Söyledikleri beni son derece şaşırtmış ve bu konuyu açtığıma pişman etmişti.Daha sonra el sıkışıp ayrıldık.
Onunla konuşmamızdan 2 ay sonra,kendisinin camide olduğunu söylediler.Hemen gittim.Bahçedeki namaz saflarının en önünde duruyordu ve üzerinde yine yeşiller vardı.Yavaşca yanına yaklaştım ve kısık bir sesle:
-Hani,dedim.Camiye gelmeyecektin?
Hiç sesini çıkarmadı.Çünkü musalla taşının üzerinde,yeşil örtülü bir tabut içinde yatıyordu.

1 Mayıs 2009 Cuma

oLasılığın tarihi gelişimi

Bugünkü anlamıyla istatistik ve olasılığın konusu başlıca; Şans oyunları İnsan hayatı ve ölçümlerine ilişkin biriken kayıtlardan kaynaklanır. Bu kaynakların her ikisi de, gerçekten tanımlanabilir biçimde, onyedinci yüzyılın ortalarından itibaren ortaya çıkar .Klasik olasılık kavramı bu kaynakların ilkinden, deneysel olasılık kavramı ise isatistikler üzerine kurulu ikinci kaynağa bağlı olarak gelişmiştir. 1650 yıllarında kumar fransız toplumunda çok yaygındı. Zar, kart, para atışı, rulet gibi oyunlar oldukça gelişmişti. Paraya olan ihtiyacın artması bazı formüllerle kumar şansının hesaplanacbileceği düşüncesini getirdi.Méré gibi etkili, sözü geçen kumarbazlar Pascal, Fermat ve daha sonra d’Alembert ve De Moivre gibi zamanın önde gelen matematikçilerinin bu konuda yardımcı olabileceğini düşündüler. Matematikçilerin problemi benimsemesiyle klasik olasılık konusu şekillendi.

Olasılığın (prior) tanımı 1654 yılında Pascal ve Fermat arasındaki yazışmalarda formüle edildi. Huygens 1657 yılında konuyla ilgili ilk bilimsel eseri yayınladı. Meşhur Bernoulli teoremi ve binom dağılımı 1713 yılında ortaya atıldı. Olasılıkların çarpılması kuralı başlığıyla bilinen genel teorem de Moivre tarafından 1718 yılında öne sürüldü ve 1733’den 1738’e kadar normal olasılık dağılımı ve merkezi limit teoreminin bir özel durumu yine aynı matematikçi tarafından tartışıldı. Normal dağılışla ilgili daha ileri gelişmeler Gauss tarafından gerçekleştirildi. Aşağı yukarı aynı zamanlarda “En Küçük Kareler” kuralı Legendre tarafından formülleştirildi. Laplace 1812 yılında şans oyunlaryla ilgili matematiksel teorinin tam bir özetini verdi. 1812 yılından hemen sonra ise klasik matematikçilerle olan temas bir bakıma kaybolmuştu. Konuya ilişkin daha sonraki gelişmeler teorik ve uygulamalı alanlarda çalışan istatikçiler tarafından gerçekleştirildi. Gaunt’ın 1662 yılında İngiltere’deki hayat ve ölüm kayıtlarını yayınlaması olasılığın ve deneysel olasılığın bugünkü biçimine dönüşmesinde ilk adım oldu.Birkaç yıl sonra bu kayıtlar ve bunlarla ilgili yorumlar Halley tarafından önemli derecede geliştirildi. Halley’e bazen bu nedenle istatisliğin babası bile dendi.İstatistik 200 yıllık bir zaman süresince çok fazla ilerleme sağlamadan gelişimini surdürdü. 1920 yılında matematikçilerle etkin temas tekrar sağlanarak ve bugun matematikteki gelişmelere bağlı olarak birçok yeni yeni uygulama alanı ile bu ilişki sürmektedir.

Olasılık teorisinin başlangıcı ifade edildiği gibi şans oyunlarıyla ilgili fiziksel gözlemlerde yatmaktadır. Yansız bir para biriminden bağımsız olarak bir çok kez atıldığında yazıların göreli sıklığının, yani tüm atışlar sonunda gözlenen toplam yazı sayısının toplam atış sayısın oranının ½ sayısına yakın olmasının çok muhtemel olduğu bulunmuştur. Benzer şekilde iyice karıştırılmış 52’lik oyun oyun kağıdı destesinden bir kağıt cekilip, bu kağıdı desteye koyup desteyi tekrar kurarak kağıt çekme işlemi aynı koşullarda birçok kez tekrar edilirse, desteden elde edilen maça sayısının tüm çekiliş sayısına oranının, yani maçaların göreli sıklığının ¼ sayısına yakınsadığı görülür.

Kart demetinde tek kart seçildiğinde 52 mümkün sonuç vardır. Sonuçlardan herhangi birini diğerinden farklı kılacak bir sebep olmadığından konuyla ilk ilgilenenler uygun sonuçların bütün mümkün sonuçlara oranını, yani 52’lik destede toplam 13 maça olduğundan 13/52 veya 1/4’ü bir maça elde etme olasılığı olarak adlandırılır.

Olasılığın klasik tanımı olarak bilinen ve bir olayın olasılığının tüm meydana gelişler eşit şanslı olduğunda olayla ilgili sonuçların sayısının tüm mümkün sonuçlara oranı olarak veren tanım kısıtlayıcı ve kısır döngülüdür. Tanım sırasında “eşit şanslı” diye olasılığı tanımlarken olasılık kavramı kullanılmaktadır. Bu nedenle bu düşünceyi olasılık teorisinin temeli olarak alamayız. Bununla beraber olasılık teorisiyle ilk ilgilenenler yine de geçerli ve faydalı sonuçlara ulaşmışlardır.

Benzer şekilde, olasılığın göreli sıklık tanımı da problem yaratacaktır. Sn n bağımsız denemede bir olayın meydana gelişlerinin sayısı ise, fiziksel olarak Sn/n göreli sıklığın bir limite yakınsayacağı beklenir. Bununla beraber limitin varlığı matematiksel anlamda ileri sürülemez. Yansız bir paranın birbirinden bağımsız birçok kez atılması durumunda Sn/n oranının 1/2 değerine yakınsaması beklendiği halde, paranın daima yazı gelmeside akla uygun bir sonuçtur. Bir başka değişle Sn/n oranın 0 ile 1 arasında bir sayıya yakınsaması ya da Sn/n oranının bir limiti olması da mümkündür.

Olasılık teorisinin matematiksel olarak gelişirken rastgele deneyin tüm mümkün sonuçlarının oluşturduğu örnek uzayı denen  gibi bir küme tanımına ihtiyaç duyulur. Doğal olarak farklı deneyler için  da farklı olur. Bir zar atıldığında  ={1, 2, 3, 4, 5, 6 }dır. Bununla beraber aynı deneye bağlı olarak her atışta çift (Ç) veya tek (T) sayı elde edilmesi ile ilgiliysek  = {Ç, T}dir. Görüldüğü gibi aynı deney için ilgilendiğimiz sonuçlara bağlı olarak farklı örnek uzayları da tanımlanabilmektedir.

Genel olarak her deneyin sonucu örnek uzayı  da bir tek noktaya karşı gelmelidir. Sonuçları önceden tahmin edilemeyen bir deneyin (rastgele deney) uygulanması ile oluşturulan örnek uzayının her alt kümesi bir olaydır. Bir olayı belirten A kümesindeki her nokta A olayına uygun bir sonucu ifade eder. Buradan hareketle her deneyin sonucu örnek uzaydaki bir noktaya karşı geleceğinden  ya kesin olay, örnek uzayının dışındaki bir olaya ise imkansız olay denir.İmkansız olay örnek uzayındaki noktaları içermediğinden boş küme  ile belirtilir. ’nın bütün alt kümelerini olay olarak nitelemek her zaman mümkün olmayabilir. ’daki bir noktaya ilişkin sonuçtaki bazı bilgileri atabilir veya ölçemeyebiliriz.O zaman cıkarılan veya eksik olan bu bilgiye bağlı olarak A olayının meydana gelmesi hakkıda karar verilemiyebilir.Örneğin bir para 5 kez atıldığında sadece ilk 3 atıştakı sonuçlar kaydedilmiş olsun .Bu durumda A={en az dört yazı}ölçülemez. Olasılığın kümesel cebirine bağlı olarak geliştirilmesi küme kavramı ve kümeler cebirinin incelenmesine bağlı olduğundan daha sonraya bırakılmıştır.

Olasılığın genel konusuMatematikselİstatistiksel verilerin ölçümleriDoğa teorisiBilginin kendi teorisinin bir karışımıdır.

Bu nedenle bu konuda bilgisini genişletmek isteyen herkez kaçınılmaz olarak bunların tümünü kapsayacak bir gelişmenin zorunlu olduğun görür. Dolayısı ile olasılık teorisine girişte matematiğin bazı temel konularına değinmek, aksiyomatik yapıyı kurup bunu geliştirmemizde bize yardımcı olcaktır. Bu nedenle ilk olarak küme kavramı bu küme cebiri, kartezyen çarpımlar, fonksiyon kavramı ve kümelerin sayılabilirliği konularına değindikten sonra olasılık kavramı ele alınacak, olasılık uzaylarına kadar olan bir gelişime yer verecektir.

Alıntıdır:www.genbilim.com